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Abstract

This work focuses on distributed optimization for multi-task learning with matrix sparsity
regularization. We propose a fast communication-efficient distributed optimization method
for solving the problem. With the proposed method, training data of different tasks can be
geo-distributed over different local machines, and the tasks can be learned jointly through
the matrix sparsity regularization without a need to centralize the data. We theoretically
prove that our proposed method enjoys a fast convergence rate for different types of loss
functions in the distributed environment. To further reduce the communication cost during
the distributed optimization procedure, we propose a data screening approach to safely filter
inactive features or variables. Finally, we conduct extensive experiments on both synthetic
and real-world datasets to demonstrate the effectiveness of our proposed method.

Keywords Distributed learning - Multi-task learning - Acceleration

1 Introduction

Multi-task learning (MTL) (Caruana 1997) aims to jointly learn multiple machine learning
tasks by exploiting their commonality to boost the generalization performance of each task.
Similar to many standard machine learning techniques, in MTL, a single machine is assumed
to be able to access all training data over different tasks. However, in practice, especially in
the context of smart city, training data for different tasks is owned by different organizations
and geo-distributed over different local machines, and centralizing the data may result in
expensive cost of data transmission and cause privacy and security issues. Take personal-
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ized healthcare as a motivating example. In this context, learning a personalized healthcare
prediction model from each user’s personal data including his/her profile and various sen-
sor readings from his/her mobile device is considered as a different task. On one hand, the
personal data may be too sparse to learn a precise prediction model for each task, and thus
MTL is desired. On the other hand, some of the users may not be willing to share their per-
sonal data, which results in a failure of applying standard MTL methods. Thus, a distributed
MTL algorithm is more preferred. However, if frequent communication is required for the
distributed MTL algorithm to obtain an optimal prediction model for each task, users have
to pay for expensive cost on data transmission, which is not practical. Therefore, designing a
communication-efficient MTL algorithm in the distributed computing environment is crucial
to address the aforementioned problem.

Though a number of distributed machine learning frameworks have been proposed, most
of them are focused on single task learning problems (Li et al. 2014; Boyd et al. 2011; Jaggi
et al. 2014; Ma et al. 2015). In particular, COCOA+ as a general distributed machine learning
framework has been proposed for strongly convex learning problems (Smith et al. 2017b;
Maet al. 2015; Jaggi et al. 2014). To handle non-strongly regularizers (e.g., £1-norm), Smith
et al. (2015, 2017b) extended COCOA+ by directly solving the primal problem instead of its
dual problem. However, in their proposed method, data needs to be distributed by features
rather than instances. In our problem setting, we suppose the training data for different tasks
is originally geo-distributed over different machines. In this case, to use the method proposed
in Smith et al. (2015, 2017b), one has to first centralize the data of all the tasks and then
re-distribute the data w.r.t. different sets of features, which is impractical.

In this paper, different from previous methods, we focus on the MTL formulation with a
£>,1-norm regularization on the weight matrix over all the tasks, and offer a communication-
efficient distributed optimization framework to solve it. Specifically, we have two main
contributions: (1) We first present an efficient distributed optimization method that enjoys a
fast convergence rate for solving the £ 1-norm regularized MTL problem. To achieve this, we
carefully design a subproblem for each local worker by incorporating an extrapolation step on
the dual variables. We theoretically prove that with the well-designed local subproblem, our
proposed method obtains a faster convergence rate than COCOA+ (Maet al. 2015; Smith et al.
2017b), especially on ill-conditioned problems. Recently, Ma et al. (2017) also attempted
to improve the convergence rate of COCOA+. However, our acceleration scheme is different
from theirs. Specifically, with a strongly convex regularizer, the acceleration (Ma et al. 2017)
can only be done for Lipschitz continuous losses, while our method is able to improve the
convergence rate for both smooth and Lipschitz continuous losses. (2) To further reduce the
communication cost at each round when handling extremely high-dimensional data, we pro-
pose a dynamic feature screening approach to progressively eliminate the features that are
associated with zeros values in the optimal solution. Consequently, the communication cost
can be substantially reduced as there are only a few features associated with nonzero values
in the solution due to the effect of the sparsity regularization. Note that there exist several
data or feature screening approaches for single task learning or MTL problems. We believe
that this is the first proposed to reduce communication cost in distributed optimization.

Recently, there have been several attempts at developing distributed optimization frame-
works for MTL. Baytas et al. (2016) and Xie et al. (2017) proposed asynchronous proximal
gradient based algorithms for distributed MTL. Their proposed methods, however, are
communication-heavy as gradients need to be frequently communicated among machines.
Wang et al. (2016) proposed a Distributed debiased Sparse Multi-task Lasso (DSML) algo-
rithm. In DSML, there is only one round of communication between the local workers and
the master. However, it requires the local workers to perform heavy computation (i.e., esti-

@ Springer



Machine Learning

mating a d x d sparse matrix) to obtain a debiased lasso solution. More importantly, DSML
makes a stronger assumption to ensure support recovery. More recently, to provide trade-
off between local computation and global communication, COCOA+ has been extended for
multi-task relationship learning by Liu et al. (2017). Later, this problem is further studied
in Smith et al. (2017a) by considering statistical and systems challenges. Note that our work
is different from Liu et al. (2017) and Smith et al. (2017a) in two ways: (1) Our proposed
method enjoys a faster convergence rate than that analyzed in Liu et al. (2017) and Smith
et al. (2017a) since their rates are the same as COCOA+. (2) We study different MTL models.
Specifically, Liu et al. (2017) and Smith et al. (2017a) studied task-relationship based MTL
model (Zhang and Yeung 2010) while our problem is feature based MTL. They are different
as discussed in Zhang and Yang (2017). Moreover, as our work focuses on feature-based
MTL model with sparsity (Obozinski et al. 2010, 2011; Wang and Ye 2015), it enables us
to design a tailored feature screening technique to further reduce the communication cost.
Unlike our framework, decentralized MTL methods have also been studied in Wang et al.
(2018), Bellet et al. (2018), Vanhaesebrouck et al. (2017) and Zhang et al. (2018). However,
these approaches may incur heavier communication cost because frequent communications
are often required between tasks in MTL.

2 Notation and preliminaries

Throughout this paper, w € RYK and W e R?*K denote a vector and a matrix, respectively,
and ¢ denotes a set.

def

0 E k= Dd+ |k e K]}, [x]y &

j=

def

~[mlE{i|1<i<mieN},{¥g]
max(x, 0).
- w; and W, i the ith and (i, j)th entries of w and W, respectively.

def def

W, . the ithrow of W, w, = {w; | i € 9}, Wg. = {W,. |i € ¥}.
— 0: a vector or matrix with all its entries equal to 0, I: identity matrix.
— |Iw]| = A/ (W, w): £r-norm of w, W]l = /tr[WTW]: Frobenius norm of W.
lef d ] d
- ||w||2y1 o Zj:] ||ng || and ||W||2’1 o ijl (lW;.|I: Zz’l—norm of w and W, respec-
tively.

Definition 1 A function f(-) is L-Lipschitz continuous with respect to || - ||, if Yw, W € R¢
it holds that | £ (W) — f(w)| < L||W — w].

Definition 2 A function f(-) is L-smooth with respect to || - |, if Yw, W € R it holds that
SO < FW) +(VF(W), W —w) + L|W—w[?/2.

Definition 3 A function f(-) is y-strongly convex with respect to || - ||, if Yw, W € R? it
holds that f(W) = f(W) + (V.f (W), W — w) +y [W — w[* /2.

Definition 4 For function f(-), its convex conjugate f*(-) is defined as f*(o) =

supy, { (e, w) — f(W)}.

Lemma 1 (Hiriart-Urruty and Lemaréchal 1993) Assume that function f is closed and convex.
If [ is (1/y)-smooth w.r.t. || - ||, then f* is y-strongly convex w.r.t. the dual norm || - ||4.
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3 Problem setup

For simplicity, we consider the setting with K tasks distributed over K workers.! For each
task k, we have n;, labeled instances {Xl A }l_1 stored locally on worker k, where xf‘ eR9is
the ith input, and yi is the corresponding output. Our goal is to jointly learn different models
in terms of wk e RY ke [K] for each task. For ease of presentation, we define

-n= Zk 1 ;.- the total number of training instances over all the tasks.

- Xk = [x, ..., ] R4 and y* £ ..., ynk] € R™: the input and output for
task k.
_wY¥ [w ,wK] € RIXK: the weight matrix over all the tasks.
~AE dlag(X], LXK eRrIE wz(whT, L (wE)TT e RIK,
We focus on the following MTL formulation with sparsity regularization (Obozinski et al.
2010, 2011; Lee et al. 2010; Wang and Ye 2015):

min® /) + 3 (pIWlai + 1L IWI). M
W n ' 2 F

where f(w) = Y& 121_1 Fi (x5, wEY), £ ((xF, wk)) is the loss function of the kth task
on the ith data point (xl A kyand p e (0 1). The group sparsity regularization || W||2,| aims to
improve the generalization performance for each task by selecting important features, whose
effect to the overall objective is controlled by the parameter A. Note that the regularization
term ||W||% is not only to control the complexity of each linear model but also to facilitate
distributed optimization.” One can rewrite (1) as the following vectorization form,

min | POV £ L pw) + 25w, @

where (W) £ p 32 lwg Il + (1= p)IW]I?/2.

3.1 Dual problem

Compared to the primal problem, it is well-known that there is a dual variable associated
with each training instance in its dual problem. This property makes the dual problem more
tractable for distributed optimization if training instances are stored on different workers. Let
a=[af,..., a,{i 1T eR™. As derived in “Appendix A”, the dual problem of (2) is

min {D(a) = *f*(—oc) +Kg*<%f>}7 3

I general, the numbers of tasks and workers can be different.

2 Note that in this work we assume the regularizer is strongly convex which is the same as in COCOA+. As
discussed in Sect. 1, for non-strongly convex regularizer, though an extension of COCOA+ has been proposed
in Smith et al. (2015, 2017b), it is not practical for real-world scenarios as data needs to be geo-distributed by
features rather than instances over local workers. In fact, our proposed method can also be applied to accelerate
the approach proposed in Smith et al. (2015, 2017b). However, how to develop a distributed optimization
algorithm when data is geo-distributed by instances and the regularizer of the objective is non-strongly convex
is still an open problem. We leave this to our future study.
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def

where f*(—a) = Z,le Z:lil fk’?(—af‘), £ () is the conjugate function of f;(-) and

2
(Aa\ 4 [(Aga w (A .all — prn],
8 o - 1 g/ an - 2(1 — ,0))»2112 .

Jj=

Let w, and a, be optimal solutions to (2) and (3), respectively. One can obtain a primal

solution w(e) from any dual feasible o via
def

w(o) = Vg*(Aa/(An)). 4)

Thus, the duality gap at & is G (o) = Pw(@)) — (—D(ax)) = P(w(a)) + D().

4 Efficient distributed optimization

For ease of presentation, we further introduce some additional notations. Let {L@k}f=1 be
a partition of [n] such that o« 2, € R" are the dual variables associated with the training

instances of the kth task. For k € [K], A e R4 *" and z e R", we define
_ AF ¢ RdKxn, (Kk) CEAifi e 2,., otherwise 0.

N
o~ o def . . . def o~ def
- ak e R (ak)i = o; if i € 2, otherwise 0, af € R™: of = %y fi(—ak) =

k
Zieykffi(_“i ).

Recall that we assume {X¥, yk}f=1 to be stored over K local workers. Therefore, it is
highly desirable to develop a communication-efficient distributed optimization method to
solve (3). Note that one can adopt COCOA+ (Ma et al. 2015; Smith et al. 2017b) to solve
the dual problem, which is similar to the idea of adopting COCOA+ for distributed multi-
task relationship learning (Liu et al. 2017; Smith et al. 2017a). However, in this way, the
convergence rate of such a COCOA+-based approach fails to reach the best one as discussed
in Arjevani and Shamir (2015). To address this problem, we present an efficient distributed
optimization method to solve (3) with a faster convergence rate compared with the COCOA+-
based approach. The high-level idea of the proposed method is summarized in Algorithm 1,
and the details are discussed as follows.

Algorithm 1 Efficient Distributed Optimization for (3)

1: Input: {x{?, ylk};z |» k€[K] distributed on K workers, strong convexity parameter &, which will be formally
defined in Sect. 5.
2: Initialize: o ) o, u, déroco, Godérm if 0> 0 otherwise 6 .
3:fort =1to T do
4. Send w(u,) = Vg*(Au,/(An)) to all workers
for k € [K] in parallel over workers do
Update oef via solving (5)
Send A&;‘ to the master
. end for
9:  Set 6, via (7)
10:  Update A“t+1 via (8)
11: end for

5
6:
7:
8

In order to minimize (3) with respect to ¢ in a distributed environment, one needs to
design a subproblem for each worker such that the objective value of (3) decreases when
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each worker minimizes its local subproblem by only accessing its local data. In (3), the term
f*(-) is separable for examples on different workers but g*(-) is not. Note that g*(-) is a
smooth function. By Definition 2, it has a quadratic upper bound based on a reference point
u that is separable. By making use of this upper bound, one can design a subproblem for

each worker such that D(a) decreases if each worker minimizes its local subproblem. Let
def

n = (1 — p)an?. The following subproblem is used for the kth worker at the zth iteration:

ak = argmm Li(@F; f, w(u,)), ®)

o kern

where u, is a reference point at the rth iteration and

detl A A 1 .
o 2 it () o )

+ 5 IAGE =) ©

It can be proved that D(et,) < Z/f: 1Lk (&f ; ﬁf, w(u,)) holds for any u,. Therefore, D(a)
can be minimized by employing each local worker to solve its own local subproblem 5. With
w(u,), each subproblem can be minimized by only accessing the corresponding local data
Xk, yh).

In the literature of distributed optimization, e.g., COCOA+-based approaches (Ma et al.
2015; Smith et al. 2017a,b; Liu et al. 2017), the reference point u, is set to be the solution of
last iteration e, _; . It leads to that the convergence rate of COCOA+-based approachs fails to
reach the best one as discussed in Arjevani and Shamir (2015). In contrast, u, in our proposed
method is set as follows,

(1-96,_,)6
=171
U =0t 7(% - “171)’
6, + 62,
where 6, is the solution of
07 = (1—6,)0%, + 916, (7

where ¥ £ y/n. The definition of u,_; implies

K
Au, =Y {A&f + M (aaf — A, )} @)
k=1 O + 02,

Specifically, u, | is obtained based on an extrapolation from e, and e, _;. This is similar to
Nesterov’s acceleratlon technique (Nesterov 2013). As we w1ll see, this technique yields a
faster convergence rate compared to COCOA+-based approaches (Ma et al. 2015; Smith et al.
2017a,b; Liu et al. 2017). Recently, Zheng et al. (2017) presented an accelerated distributed
alternating dual maximization algorithm for single task learning, where an extrapolation is
applied on the primal variable for acceleration. For smooth losses, they only proved the
accelerated convergence rate in terms of primal suboptimality while we also prove it for
duality gap, resulting in a stronger result.

Remark 1 In each iteration of Algorithm 1, w(ut) and {A(xk} i~ are communicated between

master and workers. By the definitions of A and @¥, we note that (w(u,)) eR? and XFak e R4
are actually communicated between master and the kth worker. Therefore, its communication

cost for each iteration is the same as COCOA+ in which (W(Olt))ké R? and X"af eR? are
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communicated. Note that w(u, ;) depends on Ae, but also Ae,_,, therefore we can keep
a copy of Ae,_; on the master until iteration ¢. In this way, no extra communication cost is
induced in each iteration by our method for acceleration.

5 Convergence analysis

In this section, we analyze the convergence rate of the proposed method and show that it is
faster than COCOA+-based approaches. All the proofs can be found in “Appendix”. In our
analysis, we assume that all f%;, k€ [K], i €[n, ] are j1-strongly convex (u > 0) with respect
to the norm || - ||. According to Lemma 1, it is equivalent to assuming that all f;, for k € [K]
and i € [n;] are (1/u)-smooth with respect to the norm || - ||. Since u is allowed to be 0, our
analysis also covers the case that all f}, for k € [K]and i € [n;] are only generally convex
(i.e., u = 0), which implies that all fi; for k € [K] and i € [n;] are Lipschitz continuous
instead of smooth. To facilitate analysis, we also assume that L (&f; ¥, w(u,)) is exactly
solved for any k € [K]and ¢t > 1.
By defining ¢, = 62 /1, (7) becomes

&= (1 - 9t)§,_] + 06,. 9
Foranyt > l and k € [K],’v\f is defined as
ViEal + @ —at))/6,. kelKl. (10)

In addition, the suboptimality on dual objective function €}, is defined as €/, = D(a,) —
D(a,),t > 0. By using the above notations, the following lemma shows that there is an
upper bound for the suboptimality e’D. As we will see, this is the foundation for analyzing
the convergence rate of duality gap.

Lemma 2 Consider applying Algorithm 1 to solve (3), the following inequality holds for any
t>1,
ep+ R <y (ep +R°), (1)

where R' = %’Zf:l [A (@ —v¢) :

v, =11, (1 —6;) foranyt > 1and y, = 1.

It can be found that the form of y, determines the convergence rate of Algorithm 1. Therefore,
next, we study the convergence rate by using the upper bound of y, under different settings
of the loss function.

5.1 Convergence rate for smooth losses

By applying Lemma 2, the following lemma characterizes the effect of iterations of Algo-
rithm 1 when the loss functions f};’s are (1/u)-smooth for any k € [K]and i € [n;].

Lemma 3 Assume the loss functions f;’s are (1/p)-smooth for any k € [K] and i € [n,]. If
0y =+/01n and (1 — p)run <1, then the following inequality holds for any t > 1

by < (1= T=pzn) (e + &) (12

Let 0,4 o maXy-£0 I Aa||?/]lec]?. By applying Lemma 3, the next theorem shows the
communication complexities for smooth losses in terms of dual objective and duality gap.
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Theorem 1 Assume the loss functions f;’s are (1/u)-smooth for any k € [K] and i € [n].
If0y=+/Pn and (1 — p)Aun <1, then after T iterations in Algorithm 1 with

T > ! log ( (1+ )6%
VA =p)run 8 Omax €p)’

D(otT) — D(a,) < €, holds. Furthermore, after T iterations with

1 1—p)r 0
T> |——]log <(1 +Umax)( PN L O EA),
(I—p)iun (I —p)Aun €

it holds that P(w(a;)) — (—D(ety)) < €.

Following Zhang and Xiao (2017), we define the condition number x as x =

maxg ; ||xf.c 112 /(Ap). With the above analysis, the communication complexity of our method
is linear with respect to 4/k, while it is linear with « for COCOA+-based approaches (Ma et al.
2015; Smith et al. 2017b). The value of « is typically the order of n as X is usually set to the
order of 1/n (Bousquet and Elisseeff 2002). Therefore, our method is expected to converge
faster than COCOA+-based approaches.

5.2 Convergence rate for Lipschitz continuous losses

Next, we present the convergence rate of the Algorithm 1 when the loss function is just
general convex and Lipschitz continuous.

Theorem 2 Assume the loss functions f;’s are generally convex and L-Lipschitz continuous
Jorany ke[K], i €[n,]. If 0 =1, the following inequality holds for any t > 1

1 8L2
) < —— (468 4 ——mar )| (13)
(t+2)? (1 — p)An?
After T iterations in Algorithm 1 with

0
. 8L2oma;c n 4p ’ (14)
(I — p)An=ep, €p

it holds that D(ay) — D(at,) < €.

Remark 2 For generally convex loss function, the dual objective obtained by Algorithm 1
decreses in O (1/¢%) instead of O (1/1) for COCOA+. Therefore, the complexity for obtaining
€ p-suboptimal solution is \/m that is faster than that of COCOA+ (i.e., 1/€p).

6 Further reduce communication cost via dynamic feature screening

In Sect. 4, we present an acceleration method for distributed optimization of (3) that reduces
the communication cost in terms of iteration of communications. As discussed in Remark 1,
the communication cost of our method in each iteration is linear with the number of features
d, that is the same as previous distributed optimization methods for sparsity-regularized
problems. It can be expensive for high-dimensional data. To address this issue, we present
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a method to reduce the communication cost for each iteration by exploiting the sparsity of
w, (Bonnefoy et al. 2015; Fercoq et al. 2015; Ndiaye et al. 2017). It is well-known that
the ¢ 1-norm regularization is able to produce a row sparse pattern on W, (Obozinski et al.
2011, 2010; Yuan et al. 2006; Zou and Hastie 2005). In other words, (W*)yj will be 0 for
most %j, j € [d]. Thereafter, we refer the jth feature as an inactive feature it (W*)gj =0,
otherwise an active feature. The key idea of feature screening is to identify inactive features
before sending the updated information to workers (Line 4 in Algorithm 1). In this way, the
communication cost can be reduced since it is linear with the number active features.
To identify inactive features, we need to exploit the KKT condition of (2)

(o) € i (x5, WE)). Vk € [K 1.7 € [y, (15)
Ag o,
o € (L= p)(Wa)y + 0| W)y |V € d] (16)
By checking the subgradient of || - ||, it implies (W*)gj =0if ||(W*)gj || < 1. Combining this

fact with (16), we have
“Ag/_,a*“ < p)\n = (W*)gj = 0. (17)

Algorithm 2 Dynamic Feature Screening for (3)

1: Input: {Aa,} k=1

2: Compute duality gap G(et,)

3: for all currently active features do

4:  Identify inactive feature via solving (19)
5: end for

It can be shown that one can obtain the exact optimum even without considering these

inactive features during optimization. Therefore, one can reduce the communication cost by
discarding these inactive features, thus less information needs to be communicated. To use
(17) to identify inactive features, one needs to have &, that is unknown before the optimization
problem (3) is solved. Next, we show that a feasible set .# can be constructed for ac, by using
the strong convexity of D ().
Crucial Value X\ ,x: In view of (17) and (15), there exists a crucial value Amax such that
w, =0 for any A > Apax. Let r=[f{,(0), . fl/(n (0)] €R", (15) implies that @ ,=r when
w,=0. By substituting a, into (17), we obtam Amax =mMax je[q] ||A(¢ r||/(pn). It is trivial to
obtain a closed form solution w, = 0 and &, = r if A > Apax. Therefore we only focus on
the cases when A < Amax.

Feasible Set of «,: Lemma 1 implies D(a) is strongly convex if f;;’s are smooth for all
k and i. By using this fact, the dual optimal solution &, can be bounded in terms of « and its
duality gap G (a) as stated in the following lemma.

Lemma4 Assume the loss functions f;’s are (1/u)-smooth for any k € [K ], i € [n}]. For any
dual feasible solution a, it holds that o, € F = {0 |10 —ea| < «/2G(a)n/u}

By using Lemma 4, (17) can be relaxed as

max ||As¢j-0“ <pin = (W)g, =0. (18)
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In other words, we need to solve the following problem
, st ]l —ell <2G(@)n/p. (19)

Although it is non-convex, the global optimum of (19) can be obtained by using the result
in Gay (1981). Let us define H € RExK ge RK, vj, S, S ands € RX as

of . 2 of T
- HE g 2IX) 1P 2JXE ) 2] K. XK )]

m;lx HA% .0

- Vj d=dr1’121Xke[K] ||X]; 2, fj d=Lr [k | “X];“2 = Uj,k € [K]}, Lﬁ_j dér [K]\f]
-5 = M ifk € J_j, otherwise’s, “o.

By using the above notations, the solution of (19) is given in the following lemma.

Lemma 5 vaj =0, the maximum value of (19) is 0. Otherwise, the upper bound is

K
> (x5 AP0y e,
k=1 K 2

where ¥, and's, are defined as follows: (a) 9. =2v; and s* =s+Sif 1) ISeRK Withs 7, =0
and |[s+8]| =+/2G(e)n/u, and 2) <ij, 01>:0, Vi€ 7. (b) Otherwise, ¥, >2v; is solution
of || H+v9,D! gll=+2G(a)n/u, and s, =—(H—|—79*I)_1g.

To perform screening every p iterations, one can simply add the following three lines
before line 4 in Algorithm 1.

— if 1%p = 0 then
—  Call Algorithm 2
— end if

Costs of Screening: Note that the screening is performed on the master every p iterations.

— By carefully examining the detailed screening rule, the master actually only needs Aa,
when evaluating screening rule. Even without screening, the Ao, needs to be computed
and sent to the master in each iteration as stated in Algorithm 1 and Remark 1. Therefore,
the feature screening does not induce extra communication cost.

— Regarding the computational cost, we note that the screening problem is dependent on the
number of active features that is at most d (there are less and less feature due to screening).
As shown in Lemma 5, the screening problem for each feature is a one dimension variable
optimization problem. It either has a closed form solution (Case 1) or can be efficiently
solved by using Newton’s method (Case 2) that usually takes less than 5 iterations to
meet the accuracy 10715,

— More importantly, by screening out inactive features, it can substantially save optimiza-
tion problem, especially on local computation. Recall that the local SDCA computation
complexity is O (Hd) where H is the local SDCA iteration number and its is usually more
than 10°. Compared to local SDCA computation cost, the cost of screening is negligible.

We note that Ndiaye et al. (2015) also presented a feature screening method for multi-
task learning. However, in their work, all tasks are assumed to share the same training data
while our method allows each task to has its own training data. Consequently, the feature
screening problem (19) becomes non-convex instead of convex, which is different from and
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more challenging than that studied in Ndiaye et al. (2015). In addition, Wang and Ye (2015)
developed a static screening rule that exploits the solution at another regularization parameter
and only performs screening before the optimization procedure. By contrast, our screening
rule is a dynamic with a weaker assumption to exploit the latest solution to repeatedly perform
screening during optimization. Therefore, our screening is more practical and performs better
empirically.

Difference between Our Proposed Method and COCOA+ We denote the proposed
method by DMTLg. There are two main differences between DMTLg and COCOA+. First,
DMTLj constructs the subproblem 5 by using the extrapolation of the solutions in last two
iterations that is able to achieve accelerated convergence rate. In contrast, COCOA+ only
uses the solution of last iteration. Second, DMTLy presents a dynamic feature screening
method to reduce the communication cost for each iteration by exploiting the sparsity of the
model.

7 Experiments
7.1 Experimental setting

In previous sections, we present our method by focusing on distributed MTL. We hereby
conduct experiments to show the advantages of the proposed method for MTL. In fact, our
approach can also be extended for distributed single task learning (STL) and the details are
provided in the “Appendix”.

To demonstrate the advantages of DMTLg, we compare DMTLg with a COCOA+-based
approach (Ma et al. 2015; Smith et al. 2017b) and its extension MOCHA (Smith et al. 2017a)
to solve the dual problem (3). In our experiments, the squared loss is used for regression,
and the smoothed hinge loss (Shalev-Shwartz and Zhang 2013) is used for classification
with ;= 0.5 for all experiments. It is clear to see that f; is (1/u)-smooth. For ease of
comparison, the local subproblem is solved by using SDCA (Shalev-Shwartz and Zhang
2013) for all methods. The number of iterations for SDCA is set to H = 10* for all datasets.

We run all experiments on a local server with 64 worker cores. A distributed environment
is simulated on the machine by using distributed platform Petuum (Xing et al. 2015),3 and
workers for each task are assigned to isolated processes that communicate solely through the
platform. Regarding the performance, we evaluate the number of communication iterations
required by different methods to obtain a solution with prescribed duality gap. Due to the
limitation of computational resources, we are not able to perform experiments on a real
distributed environment. However, the results (i.e., the number of communication iterations)
reported in this paper does not depend on the environment that it runs on. Compared to
COCOA+, the additional computation incurred by our method is negligible: the computation
complexity of each iteration of COCOA+ is O (H xd). The additional computations required
by our method for acceleration and feature screening is O(d) and O(d), respectively. This
cost is negligible compared to that of SDCA because H is usually around 10°.

We conduct experiments on the following three datasets (Table 1).

Synthetic Data contains K = 10 regression tasks and generated by using yf‘ = (Xf?, wh) +e.
The number of examples for each task is randomly generated, which ranges from 903 to
1098. x¥ € R399 s drawn from .#(0,1) and € ~ .4(0, 0.5I). To obtain a W with row

3 Note that our method can be implemented in other distributed platforms.
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Table 1 Statistics of the datasets

for MTL Dataset Synthetic News20 MDS
# Tasks 10 5 22
# Samples 9081 5869 16,967
# Features 50,000 34,967 10,000
Sparsity (%) 100 0.3 0.8

sparsity, we randomly select 400 dimensions from [d] and generate them from .47(0, I) for
all tasks. For each task, extra noise from .4'(0, 0.5I) is added to W.

News20 (Lang 1995) is a collection of around 20,000 documents from 20 different news-
groups. To construct a multi-task learning problem, we create 5 binary classification tasks
using data of all the 5 groups from comp as positive examples. For the negative exam-
ples, we choose data from misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball and
rec.sport.hockey. The number of training examples for each task ranges from 1163 to 1190,
and the number of features is 34,967.

MDS (Blitzer et al. 2007) includes product reviews on 25 domains in Amazon. We use
22 domains each of which has more than 100 examples for multitask binary sentiment
classification. To simulate MTL, we randomly select 1000 examples as training data for the
domain with more than 1000 examples. Consequently, the number training examples for each
domain ranges from 220 to 1000. The number of features of is 10,000.

7.2 Results of faster convergence rate

In order to test the convergence rate of DMTLg, we compare it with the COCOA+-based
approach to solving (3) under varying values of A. In view of Sect. 6, we chose A = 1072 Amax
and A= 1073 A pax to solve (3). We set o, =0 for all methods and p =0.9 for all experiments.

Figure 1 shows the comparison results in terms of the numbers of iterations for commu-
nication used by DMTLg and COCOA+ to obtain a solution meeting a prescribed duality gap.
From the Fig. 1, we can observe that:

— DMTLg is significantly faster than COCOA+ in terms of the number of iterations to meet
a prescribed duality gap. Take the synthetic dataset and News20 for example, to obtain
a solution atA=1073Ax with duality gap 107>, DMTLg obtains speedups of a factor of
6.64 and 6.94 over COCOA+ on the two datasets, respectively.

— Generally, the speedup obtained by DMTLy is more significant for small values of A.
For example, when A = 102 Amax, DMTLg converges 4.81 and 4.05 times faster than
COCOA+ on the synthetic dataset and News20, respectively. In contrast, the speedups is
improved up to 7.00 and 5.70 times faster than COCOA+ when A = 1073 A max.

— The improvement is more pronounced when a higher precision is used as the stopping
criterion. Take News20 with & = 1073 A.x for example, the speedups of DMTTg over
COCOA+ are 4.00, 4.94, 5.70 and 6.94 when the duality gaps are 10-2, 1073, 10~ and
1073, respectively.

7.3 Robust to straggler

In Smith et al. (2017a), MOCHA is proposed to improve COCOA+ to handle systems hetero-
geneity, e.g., straggler. That means some workers are considerably slower than others and
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0 10 10
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Fig.1 Duality gap versus communicated iterations on the three datasets for A = 10*2)».“4‘1X and A = 10*3)\max

the stragglers fail to return prescribed accurate solution for some iterations. Here, we com-
pare our method with COCOA+ equipped with handling system heterogeneity as presented in
Smith et al. (2017a) on News20 and show that our method converges faster even if there exist
stragglers. Specifically, we perform experiments under the setting of Smith et al. (2017a) by
using different values of H for different workers to simulate the effect of stragglers. The value
of H for each iteration is draw from [0.97yin, min] to simulate low variability environment
and [0.57min, nmin] to simulate high variability environment, where npin = ming n,.

As shown in Fig. 2, our method is still able to substantially reduce the number of commu-
nication for both low and high variability environments. This shows that empirically DMTLg
is robust to straggler although our analysis assumes that the local subproblem needs to be
exactly solved.

7.4 Results of reduced communication cost

To demonstrate the effect of dynamic screening for reducing communication cost, we perform
a warm start cross validation experiment on News20 and MDS. Specifically, we solve (3)
with 50 various values of A, {Ai}?gl, which are equally distributed on the logarithmic grid
from 0.01Amax to 0.3Amax sequentially (i.e., the solution of A; is used as the initialization of
Mi—1). To evaluate the total communication cost for the 50 values of A, we calculate the total
number of vectors of dimension d used for communication for each worker. We experiment
on the following two settings: 1) DMTLg without dynamic screening (Without DS), and 2)
DMTLg with dynamic screening (With DS). Figure 3 presents the total communication cost
used by DMTLg without and with dynamic screening to solve (3) over {Ai}fgl on News20
and MDS.
From Fig. 3, we can observe that:

— The communication cost has been substantially reduced by the proposed dynamic screen-
ing because the most inactive features have been progressively identified and discarded
during optimization. For example, when the prescribed duality is 10~7, the communi-
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o News20, lambda = 3.0708e-05 (Low) o News20, lambda = 3.0708e-05 (High)
10
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Fig.2 Duality gap versus communicated iterations on News20 with systems heterogeneity for A= 1072 Amax
and A=10"3Aax. Here, COCOA+ denotes its original version equipped with handling system heterogeneity
as presented in Smith et al. (2017a)

News20 MDS
3 = 10k
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3 EEm With DS g o ] == withourps
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= 10k A E
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S 5k~ s
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Duality gap Duality gap

Fig.3 Effect of dynamic screening for reducing communication cost. Total communication cost (normalized
by feature dimension ) used by our method without and with dynamic screening for solving (3) over {}; }1521
on News20 and MDS

cation cost reduction by the proposed method is 83.32% and 67.43% on News20 and
MDS, respectively.

— This advantage of dynamic screening is more significant when a higer precision is used
as the stopping criterion. On News20, the speedup increases from 5.99 to 8.63 when the
duality gap changes from 10~7 to 10~8. This is because more inactive features can be
screened out when a more accurate solution is obtained.

— More importantly, the proposed dynamic screening is more pronounced for the prob-
lem with higher dimension. Take the duality gap of 10~8 for example, the speedups
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obtained by dynamic screening are 8.63 and 4.14 on News20 and MDS, respectively,
where News20 is of much higher dimensionality than MDS.

8 Conclusion

In this paper, we present a new distributed optimization method, DMTLg, for MTL with
matrix sparsity regularization. We provide theoretical convergence analysis for DMTLg. We
also propose a data screening method to further reduce the communication cost. We carefully
design and conduct extensive experiments on both synthetic and real-world datasets to verify
the faster convergence rate and the reduced communication cost of DMTLg in comparison
with two state-of-the-art baselines, COCOA+ and MOCHA.
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Grant M4081532.020 and Singapore MOE AcRF Tier-2 Grant MOE2016-T2-2-060.

Appendix A: Dual problem

By introducing sz for each f};, one can rewrite (2) as

mlanka,( Z)

k=1i=1
d

L—p .
A<p2||ng||+7||w||2> st (xE, why 425 =0,k e [K1,i € [n].

j=1

Let —%af‘ be the Lagrangian multiplier for the (k, i)th constraint. For convenience, let

z:[z},...,z,’fK]TeR" and a:[a{,...,afK]TeR”.

Then, the Lagrangian is

1 K ng d
L(w,z,a):;Zme—z,-k)H(pZuw 1+122 5 ||w||>
j=1

k=1i=1

S et (o 44

k=1 i=1

K g d B
== (fuu(=2 = o) +A(p2 w1l + 1T”nwnz)

k=1 i=1 j=1

1
— (Ao, W) .
n

—
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The dual problem can be obtained by taking the infimum with respect to both w and z

K ng

ng(w,z,a) 71anZ(fkl( 7 )—akzk)

k=1i=1
d

. I—p 2 1
+inf MPZ, Wy I+ ——=Iwl ) — —(Aa, w)}.
J=

where
K "k
%ilzlfz (fki(—zf-‘)—afzf-‘> SUPZZ(W z = fu(=%; ))
k=1i=1 k=1i=1
K ng
_72210,(1( alb). (20)
k=1 i=1
Mrvlvf{ Zuw ||+—|| I”? <Aa w>}

Aa

:_ksup{ L (A w) ( an 1+ 222w )} ()

Regarding the explicit form of g* (%), it can be shown that

(3 = mf{ an@ I+ 521w o (A, w>}

The optimality condition of the above problem implies
0e( - p)ng + ,03||ng | — iA%'“’j € [d]. (21)
The definition of subgradient implies
w(g =0 1f ||Aw | < p.

Otherwise, we have
Ww

0=(1- P)ch +po—

Agj.ol.
1w |

S
which implies

|Ag, all = pan |Ag,.al = pin 1

W, = W, = '—7A{ ..o,
e = 0 = o 7 U= o)Ayl n

Combining these two cases together, we obtain

" [IAg,.all — pAn], 1

= —Ay.a, Vj € [d]. (22)
i (1 =p)lAg; el An 7/

@ Springer



Machine Learning

Then, the conjugate of g(w) is

Aa 4 [IAg,.l — prn]’
g ( ) Z,O”ng || + 7”“’” (a XW) = Z 2(1 _ p))\2n2 -

Therefore, the dual problem of (2) is

2
(1A, = pin]}

max—*Zkal( of) - )‘Z 2(1 — p)AZn?

k=1 i=1

Let w, and &, denote the primal and dual optimal solutions, respectively. From (20) and (21)
the KKT condition of (2) establishes

(a*)z < afkl( f))’Vk € [K] i€ [”k] and

1 :
EA%-“* € (I =pIWuy +p3Way . j € [d].

Appendix B: Convergence analysis

To facilitate the proof, we first introduce some useful notations and technical Lemmas. It is
easy to verify thatﬁ;‘ can be rewritten as

b,¢

~k ~k t5t—1 (~k /\k

U =a + ——— (Vi 1) kelK] (23)
1 t 5171‘1‘1991 t— o

For any ¢ > 0, we define 8, as 8, = (ut —“;)/77 =a, =u, —np, Yk € [K].

Lemma 6 (Diinner et al. 2016) Consider the following pair of optimization problems, which
are dual to each other:

def

min {D() = f*(—) + g"(A@)} and min, [P(W) £ f(AW) + g(W)},

where f* is ju-strongly convex with respect to anorm || -|| p+ and g* is 1/ B-smooth with respect
to a norm || - ||g+. Let 0,,,, = mMaxgo ||Aa||§*/||<x||§f*. Suppose an arbitrary optimization
algorithm is applied to the first problem and it produces a sequence of (possibly random)

iterates {a,}7° ) such that there exits C € (0, 1], D > 0 such that
E[D(«,) — D(a,)] < (1 = C)'D.

Then, for any

t > 1 log D(Oax + 1) Mﬂ),

- C upe
it holds that E[ P(w(at,)) — (—D(a,))] < €

Remark 3 This lemma enables us transfer the convergence rate of objective function to the
convergence rate of duality gap.
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Lemma7 Foranyt > 1, the following identities hold
68,1

Z, @ -viy) = (@, - ) (24)
{,Vf =1- QI)CI,IVf_l + l?@,ﬁf - Gtﬁlt( (25)
¢ .

Z(1a@ =17 - [a@ -9
(L= 1 (1 s o
= (1A@ ) P - JA@ -3 )

_L@AAk_Ak 2 AGF — %), AB"

= Sra@ -w)|" + o (A(@ 1), AB;) (26)
&t a (e _ e ny
SIA@ -3~ - o)A@, —uf). AB) - F[AB; |’

(1=6)¢_,( 8
el el U | LXCE ] )

Proof First, we show that (24) can be proved by using the definition of 'ﬁf and ¢,.
(Ct—l + ﬂet)ﬁf = (;t—] + ﬁet)atfl + 914}_1 (Vf,l —t/ff,l)
=k =k _ ~k ok
= ((1 =08+ 199t)ul + 0,50 = ((1 =05+ ﬁet)“t—l + 0,51V
<k ~k
= etgtfl(ﬁf - Vt—l) = Ct(“t—l _ﬁf)’

which implies 6,¢, | (@ —¥%_,)/¢, = (@_, — 6¥). Next, (25) can be shown by using B
and ¢, = 67 /1. Following from the definition of ?'\f we have

1 1 ~k 1 0, ~k

ok ~k ~k ~k N ~k ~k K

Vi =0+ 0 (“r _“r—l) = at—l"‘@(“t —nB; _at—l) = g(u[ - _et)at—l)_ Etﬂt’
t t t t

which implies

1 ) ~k
C,Qf = g(ftﬁf - ft(l - et)“];—l) - 9,;3,
t

1=6,0 & s .~k ~k
= T(?tetut - gt“z—l) — 6,8,

1—-6, (1 =0)5,_; +90, ~k 2k
= ) t( 1 —ZQt u; = Ctut—l) — 6B,
1-6 N 1-6 A7) ~k
= 0 : <(§171 + z?@t)ﬁf - Etaf—l) - 0 : <1’99t - 1 t@ )ﬁf —0,B;
t t Y

~k
=(1- 9t)§t_]/\7f,1 + ﬁgtﬁf —6,8,.

To proved (26), we need to use (24) and (25). By using the definition of ¢, and (25), one can
show that

S(Ia@ -1 - |a@ -H)

1 _
= - (Iaat s - 1At o))

A(( =008y +90)8% — (16055, + 00,8 —0,8))[

1
=2T“,<
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_ ”A< (1= 08,y + 96,8 — (1 = 6, ¥i_, + 06,8 —6,8,) ) Hz)
= 5 ([0 —e0eiA@ —5t) + 904G -5 +0.aB |
t k 2)

= ”(1 —60)6, AT —V)_)) +6,AB,

(-0 A -5t )+ 0207 A -

—<1—9>2¢ JAE -]

+ 2199 (1 6 )é‘t 1< (a* _Vf ]) A(&k _ﬁf))
+26,(1 —6,)¢,_ 1( (O( _Vz 1) A/g)
+ 2002 (A@ —8Y), ABL) — 26,(1 — 6,)¢,_, (A (@ —?f_]),Aﬁf))

= (- 0)5 (6 — 08) (1A 75 )P [AE -3 )[)

2¢,

1 ]
+ Eﬁet(gz —(1- 9,){,,1)HA(05£ _ﬁf)”z
t

1 >
+ zl”@z(] — 0051 (A@ — Vi), A@ —uy))
t

1 . 1 -
+ {—9,(1 _et)ft—l(A(“li t) A,B,)—i— Z 09 (A( _ﬁf) Aﬂf)
t

(1—-0)¢,_ 060 N

= —— L (A@E -9 ) P - A =T ) + A -
960.(1 —06,)¢,_ . .

B (A (AR R RN CAR )

—2(@ -9))) A@E - 1))

) N
+ Et((l — 06, +06,)(A@ — ), AB))

t

(I—6)¢,_ 5
=——§4¢ﬂ~ﬂ P - lA@ - ) P)

+ f‘||A(A" — )| + 0, (@ - ), AB)),
which can be rewritten as
¢ ~

Z(1a@ =317 - [a@ -9

(1—-6)¢,_ .
———éiiwaﬁ—wlw%WMﬁ—ﬁﬂw)

’IIA(A"—ﬁi‘)II +6(A@ - ). AB,)

*
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Finally, we prove (27) by using (24) and (25).

¢ ¢
Tla@ - = —f||A<c,ﬁf Sl
2({ ”A(( et)ft—l + 09;)ﬁf
- - 9,){,_&1‘71 - ﬁetﬁf + Gtﬁf) ”2
1 —~
= f”A((l - 9,){,71@1\? _/V\f—l) + t9tﬁ/t()“2
t

(1—6)%¢2
= #HA@ -Vl

n 0,(1 —0)¢ 4

~k 92 ~
(MA@ —7)). ABy) + - | AB/ |
& 2¢,

By using (24), we obtain

g
AN

5,71(51 - ﬁet)

=(1-0
(=) 2¢;

[A@ =) + (- 0)(A@E, —8)). AB))
v

—-0)"5 (1= 221G <) P
- 0)(A@E ~ ). AB) + 5 AB "

This completes the proof. O

B.1 Proof of Lemma 2

Lemma 2 Consider applying Algorithm 1 to solve (3), the following inequality holds for any
=t e+ R < y,(e%+RY), an
where R' = Zk 1 HA ok —’\71‘ H Ve =11iei (1= 6;) foranyt > 1 and y, = 1.

Proof Following from the optimality condition of @, the following holds for any k € [K]

0 e L(@;uf, w,))

1 N 1 T Au 1 T o/
= 0e— o (@) + (A) Ve (T + (B)TA@ - u)
1 ~. T Au 1 T 1 —
= @)V (T) - @)TAG -w) e - ar(-a). o)
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By using the fact f* is u-strongly convex, the following inequality holds for any z € R”

1 1 1
;f*(—a,) = ;f*(—l) - ;(3}‘*(—«,), o, —1z) — %IIZ — o’

[ I wf o~k ok ok U 2
= [fen =Y (o (- w). @ ) - Sl -e )
k=1

Substituting (28) into the above inequality, we obtain

K

A
S = e = (R Ve (T). (@ 7))
k=1
lK VNT A (ak =k (ok =k v 2
_;Z«A) Ay —1y), (o) —z))—zllz—atn
k=1
L, | o « (A, K ~k = ~k ~k Kk ~k
= en = S () A -7) - (@ - ). A 7))
k= k=1
- le-al?
1 1 Au 1 &
* * 1 k ~k k =~k
= - (v <ﬁ>,A(a,—z)>—g;(A(at i), A(@ — 7))
— —lz— e,

By using the fact that g* is 1/(1 — p)-smooth and convex, the following inequality holds for
any z € R"

A(oct —u,)|?

ol () 2o |
%) - A(Vg*(%>’ W)
Au, ) A, — “t)>

rn

A(oct —u,) |2

A(at —-u,)
ol

2(1 —p) H
N %<Vg*(%>’ Az - “’)> 2(1 - ‘

()
<3¢ (32) - oV () A= a4 5 zzu & —aH|’
( )_l<vg*(%t),A(z—a,)> ZHA(«,—u,

n

)
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where the last inequality is obtained by using the fact that A is a block diagonal matrix. Thus,

1 A
D) =~ f*(—a) + 2" ()

< lf*(—z) — 1<V *(ﬂ) A(e, — Z)> _1 i(A(ak _ﬁk) A(otk 'ik)>
“n n & an /)’ ! n = t 1 !
- 2||z — |’ + Ag*(‘:‘—:) - %(Vg(%) A a,)

+ Py Z ||A(6Z, - “z)”

K

1
=D(@z)— — Z(A(af — ), A —af +af -7"))
k=1
1 K
+2—Z||A<«x,—u,)|| ——||z—a||
nk:l
1 K K
=D~ 3 (MA@~ ). A Z!Awr—“?‘)’
k=1 k=1
9
- S llz =l
K n K
=D(2) -~ ) (AB; A@E —u) 52|Aﬁ,| ——nz—an

k=1

which implies

K K
_ _ 9
D() = D)+ Y (AB;. A@Z —ﬁf))+g > |AB | + Slz—e @9
k=1

k=1

Substituting z = «, and z = o, into (29), we obtain

K
PO
D(a)>D(ot)+Z ABY A(@ — b)) +gZ||AﬂfH2+§||oc*—oct||2

k=1

K
D(@i1) = D)+ Y (AB; A@, —))+ 2 leAﬂ,ll += |oc, - a2

k=1

Combining these two inequalities together with coefficients 6, and (1 — 6,), respectively, we
obtain

0,D(a,) + (1 —60,)D(a;—1)

K K

= D@+ YO (AR AQ@: + (- 0)al )+ 5 )" AR
k=1 =1

21=6)

2
) ”at—l —-atH,

06
+7’||a*—a,||2+
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which is equivalent to

K
D(e,) — D(et,) <(1 = 6,)(D(ets—1) — D(e,)) — Y _ | AB A(0,@ + (1 —0)ak_, —1))
k=1

K
(1 -6
Py ) [
K
= (1=6)(D(@—1) = D(@,) = (1= 6) ) (AB, A(@}_, — 1))
k=1
K
- Z<Aﬂt’ (@ —uy))
k=1
Ui X 9(1—6.)
Eg”Aﬂt “ _7” “t”z_ ) L ||°lt—1—05;||2-

Substituting (26) into the above inequality, we obtain
D(et;) — D(a,)

K
= (1= 0)(Dl@—1) — D@,) — (1 -6) Y (AR, A@), — )

k=1
—ﬁ@kil| & )
% (1@t =) - A -+ )—fZHA
o 2_9’)”«, —
J‘%”ﬂkzl(uzs(af—vfl)W—uA(ﬁf D) = Gl —el

which is equivalent to

<<1—9><D<a, 1)—D<a>+{’ 1ZHA«M -

k=1
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K K
g 0 _
Y IA T - -6 Y AR A - -3 a1
k=1 k=1

k=1

90, & 90 9(1—6,)
- S IA@E -7 = S e, — I = = et — .

Substituting (27) into the above inequality, we obtain

(D) - D) + & 3 A -+
k=1

K
= (1= 6) (D@ - D@,) + 432_1 > lAa@ v
k=1

k=1
1-0)¢, 96 2
T ’1<1—Tt’)”A(ﬁf_/‘7f—l)”
K
_ 96, Y LA AT
5 l;HA( N ut)H 3 e, — el
- a2
Gy 2
= (1= 6)(D(e-1) = D) + 1Y |a@ -v)[7)
k=1
1-06
- C e At et
2 g
K
56 . 9(1—6,)
_T’I;HA @t —a)|? ——n — ol = =l — e,

which can be rewritten as
C
(D(a;) — D(e,)) + 2 Z |A (e —/V\f

< (1 —6)(D@ 1) ~ D )—i—;t—]ZHAoc 5 ))

(I =6)¢_, 96, 2
—ftl l||A(z Vi)l

90, N | 4 (o (16,
TS A ) ) - e, el - ST A

2
k=1
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This implies

K
(D@,) - D) + Z% A@ -
k=1

K

Z “_Vt1”>

< (- 6)(D@1) - D@,

Applying the above inequality for i = 1 to ¢, we obtain

K
(D@) - D)) + 2 Y |A@: -
k=1
t
<[]0 - 6)(D@) - D) + L a@: - %)),
i=1

By using the definition of y;, the above inequality can be rewritten as
(D(@,) - Di@,)) + Z [A@ -1 = 7 (D@) - D) + L|a@E - %)),

This completes the proof. O

B.2 Convergence analysis for smooth losses
B.2.1 Proof of Lemma 3

Lemma 3 Assume the loss functions f;’s are (1/u)-smooth for any k € [K] and i € [n,]. If
0y=+/01n and (1 — p)rpun <1, then the following inequality holds for any t > 1

t
el < (1 —J/a —p)k;m) (€9 + RO). (12)
Proof 1t can be proved by using Lemma 2. From Lemma 1, we know that f,; are j-strongly
convex for any k € [K],i € [n;] since f;; is (1/n)-smooth. If §,_; > o, then ¢, =

(1—=0)¢_,+06, > (1-6,)0 +6,0 = . There we have {, > ¢ holds for any 7 > 1 since
Zo > v'. Hence,

02 /n=1¢ =6, >ng, =6, > /n = /(1 — p)aun.

Then, y; can be bounded

t
ye =[]0 =69 < (1 = V(1 = p)hun)".
i=1
Substituting this result and vo = «, into (11), we obtain

D)~ D(@,) = (1 = V(T = pran) (D) = D(@,) + 2 [Ate, — ap)|*).

This completes the proof. O
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B.2.2 Proof of Theorem 1

Theorem 1 Assume the loss functions f;’s are (1/u)-smooth for any k € [K] and i € [n,].
If0y=+/Vn and (1 — p)Aun <1, then after T iterations in Algorithm 1 with

> ! log ( (1+ )6%
= (l—p)kun 0g Omax €p ’

D(ocT) — D(a*) < €p holds. Furthermore, after T iterations with

1 1—p)r 9
> [—————log ((1 + Opar) (I = p)Apun + o, 570>’
(I—=p)rpun (I —prpn €,

it holds that P(w(a;)) — (—D(ay)) < €.

Proof 1t is easy to see that D(a) is ¥¥-strongly convex since f; is (1//)-smooth for any
k € [K], i € [n]. It implies

4 5 2 2 2 5
D(ay) > D(et,) + 5”“0 —o, |I° = log —o, |I° < E(D(ao) - D(“*)) = EGD'

By using this result, (12) can be rewrite as

<(- ,/(1—p)mn)’<

(1- w/(1—p)xpm)’(e maxlla a0||)
< (1= V= pgn) (e + Do 2et)
(

1= /(1= p)aun) (1 + o€,
<exp(—ty/(1 = p)aun) (1 + 0y )€,

where the last upper bound will be smaller than €p if

1 e%
=\ T i o (o )

By applying Lemma 6, we know that for any

(1 +<rnm>eD((1 ey +0)
(Ir— P)MM
1—p)r 3
(1 +0max)( ’0) Mn+amdx 67D>5
(1 — p)run p)k (I=p)un  €c

it holds that D(ay) — P(w(otT)) < €g. m]

e’D = D(a,) — D(e,) D(ao) — D(a,) + —IIA(oc — o)l )
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B.3 Convergence analysis for Lipschitz continuous losses: Proof of Theorem 2

Theorem 2 Assume the loss functions f;’s are generally convex and L-Lipschitz continuous
forany ke[K], i €[n,]. If 0o =1, the following inequality holds for any t > 1

max

t < 4
‘0 = (r+2)2( Dt T

2
0 8L“0o ) (13)

After T iterations in Algorithm I with

8L2 4€9
T> [ Oma Dy (14)
(I = p)in=ep €p

it holds that D(ocT) — D(oc*) <e€p.

Proof It can be proved by using Lemma 2. It is easy to see that f'; are general convex
(i.e., u = 0) since f;; are L-Lipschitz continuous for any k € [K],i € [n;]. By using the
definition of ¢, and the fact that u = 0, we obtain y; = (1—6,)y:—1 = ¢,/¢,_;vi—1. Applying
the above identity from i = 1 to ¢, we obtain y; = Ao¢,; /{0 = ¢,/%o. In addition, we can
obtain 0, = (y,—1 — ¥1)/vi—1 from y; = (1 — 6,)y,—1. Therefore,

1 U _Zn =2Vt 2y = (i v

Vi V-l 2yi-1/Vr N 21V
9! 9[

NN
By using 9,2/77 = ¢,, we obtain 1/y; — 1/y,—1 > 0.5¢/1% = 0.5/¢o(1 — p)An?. Combing

the above inequality from i = 1 toi = ¢, we obtain

1 1 4 4
-1 ngo = v < 5 = 5
Ve VT2 (1o +2)"  (tv/so(1 = p)in? +2)

Substituting this results into (11), we obtain

K
Diay) — D)+ 2 Y [A@ - 7))

4
(tv/2o(1 = pyan? +2)° ( Pt

Since 6y = 1, we have ¢y = 98/7) =1/(11 - p)An?). Substituting the value of ¢y into (13),
we obtain

D(a;) — D(a,) =

D(et;) — D(e,) <

4 %o K ~k ~k 2)
D(xy) — D(o,) + — Al@—a
(/%01 — pan? +2)° ( 0 y 2 a@ -ab)l

4 0 1 2
= 52 (Bt s A —el)
4 0 1 2
= (l + 2)2 (GD + 2(1 _ p))\nz"max”“* - (!0” )
1 8L%, .
< (ady s Sy
(t+2) (1 = p)in
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where the last upper bound will be smaller than €p if

0
I
(I —p)in“ep  €p

This completes the proof. O

Appendix C: More details of dynamic feature screening
C.1 Proof of Lemma 4

Lemma 4 Assume the loss functions f;’s are (1/u)-smooth for any k € [K], i € [n}]. For any
dual feasible solution a, it holds that a, € F = {0 [ 10 —a| < «/ZG(ot)n/u}.

Proof Since f,; are (1/)-smooth for any k € [K], i € [n,], it implies that D(a) is (u/n)-
strongly convex.

D@ =D (,) + (0D (er,) 0t —,) + % o — e, ”2
= —D(@) < —-D(a,)— (0D (a,) & — ) — % [ —oe*”2
= —D(e) £ P(w(e) — (3D (a,) . a — ;) — % Ja —a,|

= —D(@) < P(W(e) — % o — e, |,

where (a) follows from D(a) is (u/n)-strongly convex , (b) is obtained by applying the
weakly duality theorem, and (c) follows from the optimality of «,. Therefore, we obtain

|, —a| < V2nG(a)/n = o, € Bla, /2nG () /).

This completes the proof. O
Before proving Lemma 5, we first introduce the following lemma.

Lemma 8 (Gay 1981) Let us consider the following minimization problem

def 1

Srglgg {vis) = 5 (s. Hs) +(g. ) } st IDs| <3, (30)

where H € R"™" be a symmetric matrix, D € R"*" is an nonsingular matrix, and § > 0.
Then, s, minimizes  (S) over the constraint set if and only if there exists a U, > 0 such that

H+3D'D>0 (1)
(H n leD) S, = —g (32)
[Ds. || =8 if D > 0. (33)

This 9, is unique.

Next, we prove Lemma 5 by using Lemma 8.
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Lemma5 Ifv ; =0, the maximum value of (19) is 0. Otherwise, the upper bound is

K
Z <le(’ ak>2+ nG/ja) 17*_1 (g, 84),

k=1
where ¥, and s, are defined as follows: (a) 9, =2v; and s* =s+S if 1) IS RK withs.z; =0
and [§-+81| =+/2G @ /11, and 2) (X!, 6,)=0, Y1 €.7;. (b) Otherwise, 9, >2v; is solution
of | H+9,1) "' g||=/2G()n /1, and s, =—(H+9,1)"'g.

Proof Letz = 0 — o, then (19) is equivalent to

max A,z + @) st |zl < V2G(@n/n,

The objective can be relaxed as following

(xt, @ +ab)),

[
Mx

IAg, @t e

~
Il
LR

I
M=

(X425 4+ 2x5 24)XE o) + (X4 o),

~
Il

(ARG D AT R

k=1

Mw

~
I
-

Lets € RX with s, = ||z¥|, we then define v (s) as ¥ (s) = %(s, Hs) + (g, s). By using the
relaxed objective function, (19) becomes

K K
max _ —y @+ (X =~ min oy (XE
Il <v/2G @7k = Isll<v2G @/ =

where min”SHS VIC@HJE ¥ (s) can be rewritten in the form of (30) by defining D = I and
8 = /2G(a)n /. Then, Lemma 8 implies there exists a unique 9, such that

H+ 90> 0= 0, > max 2|X5 | = 0, > 20,
ke[K]

which implies ¥, >> 0 since v; > 0. Then, the problem can be considered as two cases
¥, = 2vj and ¥, > 2v;. Given ¥, and s,, ¥ (s,) can be formulated by using (32) and (33)

1 1 D
V() =5 (s Hs,) + (g, 82) = 5 (s, (H+ 2uD)s,) + (g8) — = lIs.lI?

1 10 1 nG(x
= - E <S*7 g) + (g, S*) - 7*82 = E (g, S*) - %0*7
which implies the upper bound of (19) is
K K
» nG(a 1
Z 1//(5*)_2< k.,ak> + ( )0*_*(&5*)-
J w 2
k=1 k=1

Next, we show the values of s, when ¥, = 2v; and ¥, > 2v;, respectively.
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Table 2 Statistics of the datasets

for STL Dataset # Samples # Features Sparsity (%)
RCV1 677,399 47,236 1.5e-3
URL 2,396,130 3,231,961 3.5e—5

Case 1: 9, = 2v;. In this case, (32) and (33) imply (H + 2v;I)s, = —g and ||s,|| = § that
is equivalent to Therefore, if all above conditions hold then %, = 2v;, otherwise we have 1,
that is discussed in the following.
Case 2: ¥, > 2vj;. In this case, H + 9,1 is an invertible matrix. From (32) and (33), we
obtain

H+9)s.=—g and |[s.]| =34,

which implies s, = — (H + 9,1)~' gand || (H + #,1)'g| = v2G(@)n/sz. This completes
the proof. O

Lemma 5 shows that there exists a global optimum #,, however, we need some algorithm
to obtain the value for the case of ¥, > 2v;. Note that 9, € (2v;, 00) is the unique solution

of X
"
3 = — —
YO = Tl oD Tgl Y 2G@n

The above equation can be efficiently solved by using Newton’s method. Besides Newton’s
method, ¥, can also be efficiently solved by using bisection method.

Appendix D: More details on single task learning

In this section, we provide more details on the extension of our method to single task learning.
Specifically, we consider the following £1-norm regularized learning problem [i.e., elastic
net (Zou and Hastie 2005)]

;gg,,;Zkaz w) + 2ol + 152w, (34)

k=1 i=1

Then, the local subproblem for each worker is
= o 1 1 Au SN
L@ u )“m( G+ (Ve (). At at))

~k ok A AU,
HA( ol +t %8 (ﬁ)

where n = (1— ,o)kn2 and a safe value for o’ is 0/ = K (Ma et al. 2015). We compare the
performance of our method with COCOA+ on two datasets (Table 2) with smoothed hinge
loss (Shalev-Shwartz and Zhang 2013)

0 if yizk > 1
Kk i
fi@H) = 1—yizi—%2 ifykk <1 p
217(1 - yika-c) otherwise

%

where p is setto u = 0.5.
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RCV1, lambda = 4.8416e-06 RCV1, lambda = 4.8416e-07
0 0
10 10
—+-COCOA*, H = 500000 -+ -COCOA+, H = 500000
107" -~ -Our, H = 500000 107! - -Our, H = 500000
Q. Q.
@© ©
O 102 (4]
2 =
g 10° S
a a
10
10°
0 50 100 150 200 250 0 200 400 600
Number of Communications Number of Communications
0 URL, lambda = 5.4306e-06 o URL, lambda = 5.4306e-07
10 10
-©-0ur, H = 500000 —-e-0ur, H = 500000
107 -
Q.
© [N
O 10?2 I
2 z
[ 3 =
S 10 ©
a a
10
10 108
0 50 100 150 200 250 300 0 200 400 600 800 1000
Number of Communications Number of Communications

Fig.4 Duality gap versus communicated iterations for A = 10*2}%&x and A = 10*3)»max

RCV1 URL
3k

IS
=
1

W Without DS
HEE With DS

[ Without DS
HEE With DS

W
~
1

—_
>~

1

Total communication cost / d
()
~
1

Total communication cost / d

(=]
I

10 107° 1077 107® 10 10 1077 107%
Duality gap Duality gap
Fig.5 Effects of dynamic screening for reducing communication costs. Total communication costs (normalized

by feature dimension d) used by the proposed method without and with dynamic screening for solving (3)
over {A; }fgl on RCV1 and URL

We compare the performance of our method with COCOA+ on two datasets in Table 2
with smoothed hinge loss (Shalev-Shwartz and Zhang 2013). In our experiments, 8§ workers
are used (i.e., K = 8) and p = 0.9 for both datasets. The SDCA (Shalev-Shwartz and Zhang
2013) is used as local solver for both methods and H is set to H = 5 x 10°. We evaluate
two methods for & = 102 Amax and A = 1073 Amax. Figure 4 shows the comparison in terms
of the number iterations for communication used by our method and COCOA+ to obtain a
solution meeting a prescribed duality gap. In addition, we also evaluate the effect of dynamic
screening for further reduced communication cost. The setting is the same as that presented
in Sect. 7.4. Figure 5 presents the total communication cost used by our method without and
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with dynamic screening to solve (34) on RCV1 and URL. As observed, the proposed method
performs as well as it works for MTL.
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